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We perform Langevin dynamics simulations for pulse solitons on atomic chains with anharmonic nearest-
neighbor interactions. After switching off noise and damping after a sufficiently long time, the solitons are only
influenced by the thermal phonon bath which had been created by the noise. The soliton diffusion constant D
is considerably smaller than before the switch-off, and it is proportional to the square of the temperature T, in
contrast to the diffusion due to the noise which is proportional to T. We derive a diffusion equation for a soliton
which is scattered elastically in an ensemble of phonons and derive general expressions for D and for the drift
velocity vd. These expressions can be evaluated for the case of the Toda lattice for which the soliton shift due
to the phonon scattering is known explicitly. D is indeed proportional to T2 and agrees well with the simulation
results, while vd is much smaller than the soliton velocity and cannot be measured in the simulations due to the
large fluctuations of the soliton position. We express D in terms of soliton characteristics which are known also
for solitons on other anharmonic chains in the continuum limit: namely, velocity, amplitude, and width. The
results agree well with the simulations if the soliton shape is the same as in the Toda case. If the shape is
different, only an estimate of the order of magnitude can be given.
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I. INTRODUCTION

We consider a family of soliton bearing lattice models:
monatomic chains with anharmonic nearest-neighbor interac-
tions. Besides the linear excitations �acoustic phonons� there
are nonlinear coherent excitations: namely, solitary waves �in
short solitons� which are supersonic compressional pulses.
The spectrum of these nontopological excitations does not
exhibit an energy gap. As a consequence the equilibrium
statistical mechanics of these models �below� is very differ-
ent from that of systems which bear topological solitons, like
the nonlinear Klein-Gordon family.

Very recently such qualitative differences were also found
when the diffusion of solitons is considered: Both pulse soli-
tons on anharmonic chains �1� and pulse solitons on classical
isotropic Heisenberg spin chains �2� exhibit a superdiffusive
behavior: The variance �2�t� of the soliton position X�t� con-
tains anomalous terms proportional to t2 or t3, in addition to
the normal random walk term Dt, where D is the soliton
diffusion constant and t is the time. These superdiffusive
terms were obtained by collective variable �CV� theories
which include, besides the soliton position, additional vari-
ables like the width or amplitude of the soliton. The normal
linear term in �2 stems from the soliton shifts due to the
“kicks” of the white noise which models the thermal fluctua-
tions. In contrast to this direct effect, the superdiffusive terms
represent an indirect effect which stems from distortions of
the soliton shape �due to the noise� which in turn change the
soliton velocity and thus in the end the soliton position.

The above predictions of the CV theory for the lattice
solitons were confirmed by Langevin-dynamics �LD� simu-
lations �1�. However, there is one exception: For low-energy
solitons �with velocities very close to the sound velocity� the
observed variance �LD

2 is larger than predicted �but linear in

t; the superdiffusive contributions are negligible in this ve-
locity regime�. The difference between �LD

2 and the result
�CV

2 from CV theory was explained by the influence of the
phonons which are not taken into account in the CV theory:
After switching off noise and damping in the LD simulations
after a sufficiently long time ts, the solitons are only influ-
enced by the phonon bath which has been created by the
noise. For t� ts the simulations are molecular-dynamics
�MD� simulations. Here the solitons show a normal diffusion
�MD

2 =DMDt. The difference DLD−DMD in the slopes before
and after the switch-off agrees very well with DCV. This re-
sult clearly confirms the collective variable theory, and it
strongly suggests that DMD is equal to the diffusion constant
Dph of a soliton in a thermal phonon bath.

The aim of our paper is to calculate Dph and to compare
with DMD from simulations. It is important to note that Dph is
not related to a viscosity, via an Einstein relation, because in
our random walk problem no dissipation is involved for two
reasons: �i� We consider a Hamiltonian system �no noise and
damping�, and �ii� the solitons are scattered elastically by the
phonons, because our solitary waves are exact solutions
which are stable against perturbations by linear excitations
�phonons�. The nonintegrability of our systems would only
be important if we consider soliton-soliton scattering where
the solitons loose energy due to radiation of phonons.

For the kink solitons of the sine-Gordon model, Dph�T2,
where T is the temperature of the phonon bath, was predicted
already a long time ago �3–6�. We will use essentially the
same methods; however, compared to this model, some im-
portant differences will show up in Sec. III. Moreover, the
MD simulations are different, too: The sine-Gordon system
must be discretized which produces an artifact: namely, a
Brillouin zone for the phonon states. The unwanted effects
due to this artifact can only partially be avoided by certain
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tricks—e.g., Ref. 6. Such tricks are not necessary for our
lattice model which is discrete anyway.

We will proceed in the following way.
�a� We first consider the Toda lattice �7�, because it is the

only lattice model for which the soliton shift due to scatter-
ing with phonons was calculated exactly �8�.

�b� Our result for Dph can be written as a function of
soliton characteristics: namely, the soliton velocity, ampli-
tude, and width. Therefore our result can be generalized to
other anharmonic chains for which these characteristics are
known.

�c� The results of �a� and �b� are tested by MD simulations
for the Toda lattice and for the case of interaction potentials
with cubic and quartic anharmonicities.

Finally we would like to stress that we consider a non-
equilibrium situation: a single soliton with a given velocity
in a thermal bath of phonons. In contrast to this, the diffusion
of an ensemble of solitons in thermal equilibrium was re-
cently investigated for the case of the Toda lattice �9� by
using earlier results from Bethe ansatz theory for the Toda
lattice �10�.

However, in contrast to topological solitons �e.g., sine-
Gordon kinks�, the nontopological Toda solitons do not yield
a clear-cut evidence of their existence in thermal equilib-
rium. This holds both for static properties, like the specific
heat, and for dynamical quantities, like the dynamic form
factor �Fourier transform of the displacement autocorrela-
tion�; see the brief summary in the Appendix. For this reason
the soliton diffusion constant in Ref. �9� is in fact an inter-
mediate result which cannot be tested by MD simulations. It
appears, however, as an input for the kinetic energy autocor-
relation, which was confirmed by the simulations.

It is possible in principle that a mode-mode coupling ap-
proach could reproduce some of the effects we find and con-
firm them by direct numerical simulations for the
low-amplitude excitations we consider. However, such ap-
proaches lose the information of solitonlike coherence,
which we find to persist to long times. This is important for
the extension of our Toda lattice results to more general non-
linear lattice potentials. The particlelike coherence and its
response to the environment of phonons in the same nonlin-
ear lattice are an explicit example of optimal coarse graining
in a complex system and therefore to intelligent multiscale
modeling. The particlelike excitation represents an important
scale for physical properties, and it interacts with a bath of
modes provided self-consistently by the same lattice without
interaction with an ad hoc external environment.

II. TRANSPORT EQUATION FOR SOLITON DIFFUSION

We use standard procedures to derive a diffusion equation
for a soliton which is scattered elastically in an ensemble of
phonons. We mostly follow Refs. �4,5� in which the diffusion
of kink solitons in the sine-Gordon model was considered.
However, compared to this model some important differ-
ences will show up, both for the analytical calculations and
for the MD simulations.

We consider a time interval � in which a soliton with
velocity v collides with nq phonons of wave number q and

suffers spatial shifts �q�v�. The collision time is assumed to
be much smaller than �. The total shift of the soliton during
� is

�tot�v� = �
q

nq�q�v� . �1�

For the probability P�x , t�dx to find the soliton at time t in
the interval �x ,x+dx� we have the master equation

P�x,t + �� = P�x − v�,t� + �
�nq�

P�x − v� − �tot,t�W��nq�,��

− �
�nq�

P�x − v�,t�W��nq�,�� . �2�

Here W��nq� ,�� is the probability that �nq�=nq1
,nq2

,….
phonons collide during �. A Taylor expansion up to first or-
der in � yields

�
�P

�t
= − v�

�P

�x
−

�P

�x
�
�nq�

W�tot +
1

2

�2P

�x2 �
�nq�

W�− 2v��tot + �tot
2 � .

�3�

Dividing by � and using Eq. �1� we obtain the diffusion
equation

�P

�t
= − �v + vd�

�P

�x
+ Dph

�2P

�x2 , �4�

with the drift velocity

vd =
1

�
�
�nq�

W��nq�,���
q

nq�q �5�

and the soliton diffusion constant

Dph =
1

2�
�
�nq�

W��nq�,���
q,q�

nqnq��q�q�. �6�

We remark that the third term on the right-hand side �RHS�
of Eq. �3� yields a contribution to Dph that is proportional to
vvd�, which has to be omitted in order to get a consistent
expansion in �.

We now assume the independence of the collisions
with phonons of different wave numbers which means that W
factorizes

W��nq�,�� = 	
j

w�nqj
,�� . �7�

We then obtain

vd =
1

�
�

q

�q
nq���� , �8�

where


nq���� = �
nq

nqw�nq,�� �9�

is the average number of phonons which collide with the
soliton during �. The double sum in Eq. �6� can be split into
off-diagonal and diagonal parts:
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Dph =
1

2�� �
q�q�

�q�q�
nq�
nq�� + �
q

�q
2
nq

2� . �10�

Adding the term with q=q� to the first sum and subtracting it
from the second sum we obtain

Dph =
1

2
vd

2� +
1

2�
�

q

�q
2�
nq

2� − 
nq�2� . �11�

Here the term linear in � has to be omitted in order to be
consistent with the above neglection of other linear terms
�formally one would like to take the limit �→0 in Eqs. �8�
and �11�, but on the other hand, � must be much larger than
the collision time�. The final result

Dph =
1

2�
�

q

�q
2Var�nq���� �12�

for the soliton diffusion constant only depends on the shifts
�q of the soliton and on the variance of the number of
phonons which collide with the soliton.

We first evaluate the drift velocity in Eq. �8�. 
nq���� is the
product of the phonon current and the duration � of the
interval


nq���� =

Nq�

L
�vrel�� . �13�

Here L is the length of the system and 
Nq� /L is the pho-
non density—i.e., the average number of phonons of wave
number q per unit length. vrel=v+vd−vq is the relative ve-
locity between the soliton and phonons with group velocity
vq=d�q /dq, where �q is the phonon dispersion curve. In vrel
the drift velocity vd must be included which means that Eq.
�8� yields an implicit equation for vd:

vd =
1

L
�

q

�q
Nq��v + vd − vq� . �14�

For Dph we need Var�nq�. We divide L in a large number K
of equal intervals of length L /K, where each interval
i=1,2 , . . . ,K carries Nq

i phonons. We choose K such that the
interval length equals the distance which the phonons with
velocity vq travel during the time � in the soliton’s rest
frame—i.e., L /K= �vrel��. Then nq��� is equal to Nq

i . The total
phonon number Nq is the sum over all Nq

i . One can easily
show that Var�Nq�=KVar�Nq

i �, assuming that the phonons in
different intervals are statistically independent. We then ob-
tain Var�nq����=L−1Var�Nq��vrel�� and finally

Dph =
1

2L
�

q

�q
2Var�Nq��v + vd − vq� . �15�

We treat a classical model, but it is convenient to start
with the Bose-Einstein statistics for the phonons and to take
the classical limit later:


Nq� = �e��Eq−	� − 1�−1, �16a�

Var�Nq� = kBT
�

�	

Nq� = 
Nq��
Nq� + 1�; �16b�

see Ref. �11�, for instance. Eq and 	 are the energy and
chemical potential of the phonons with wave number q.
Since the phonon number is not fixed, 	 is zero which is
inserted after the differentiation in Eq. �16�.

In the classical limit each phonon state q is highly popu-
lated �formally the high-temperature limit�:


Nq� = kBT/Eq 
 1, �17a�

Var�Nq� = 
Nq�2. �17b�

In q space the phonon density is 
Nq�L / �2�� and its variance

Nq�2L / �2��. Thus the relative fluctuations are �2� /L, as
expected.

With Eqs. �17�, �13�, �12�, and �8� we finally obtain

vd = kBT
1

L�
q

�q

Eq
�v + vd − vq� , �18a�

Dph =
1

2
�kBT�2 1

L
�

q
��q

Eq
�2

�v + vd − vq� . �18b�

III. DRIFT VELOCITY AND DIFFUSION CONSTANT FOR
TODA SOLITONS

The nearest-neighbor interaction potential of the Toda lat-
tice �7� can be written as

Ṽ�r̃n� =
m�2

�2 �e−�r̃n + �r̃n − 1� . �19�

r̃n is the relative displacement of particle n, m is the mass of
the particles, � is the anharmonicity parameter, and � is the
frequency in the harmonic limit ��→0�. Following most of
the literature we will work with the dimensionless form

V�rn� = e−rn + rn − 1, �20�

but we will return to the original units whenever necessary
for the discussion of results. For this return we must take into
account that the system has two length scales: 1 /� and the
lattice constant a.

The solutions of the linearized equations of motion are
acoustic phonons with

�q = 2�sin
q

2
�, − �  q � � , �21a�

vq = ± cos
q

2
, �21b�

where the upper �lower� sign holds for positive �negative� q.
The speed of sound is c=1. The one-soliton solution is

e−rn�t� − 1 = sinh2 � sech2���n − v�t�� , �22a�
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v� = ±
sinh �

�
, �22b�

where the parameter ��0 determines all properties of the
soliton. We will always consider a positive soliton velocity
v�—i.e., movement to the right.

Due to the scattering with the soliton, the phonons suffer
phase shifts �q which were calculated by different methods
�8,12,13�:

tan��q/4� = �coth��/2�tan�q/4� , 0 � q � � ,

tanh��/2�tan�q/4� , − �  q � 0.
 �23�

The change of the phonon density of states due to the pres-
ence of the soliton is

���q� = −
1

2�

d�q

dq
, �24�

and the total number of phonon states is reduced by 1:

�
−�

�

dq���q� = − 1. �25�

Considering a lattice with finite length L one can see �8� that
the removed state is the standing wave at the right edge
q=� of the Brillouin zone. The states around q=0 are not
changed �in first order in 1/L�, and the state q=0 is not
changed at all; this is a consequence of translational invari-
ance which is not destroyed by a Toda soliton because it is a
pulse soliton. By contrast, in the presence of topological soli-
tons, like the sine-Gordon kinks, the q=0 state is removed �if
the kink is static; if it is moving, the state with the same
group velocity is removed�.

For the above reasons the density of states is changed
only near the edge of the Brillouin zone, where the phonon
energies show a maximum. These phonons are not much
excited for low temperatures, which means that we can use
the unchanged density of states when we replace the sums in
Eqs. �18� by integrals:

1

L
�

q

¯ = �
−�

� dq

2�
¯ . �26�

The most important ingredient for the explicit calculation of
vd and Dph is the soliton shift �q. In contrast to �q which was
calculated by considering a plane-wave phonon �8,12� or by
performing a linear-stability analysis �13�, a phonon wave
packet had to be considered �8� in order to get �q. The wave
packet is defined by a distribution function R�k� in k space,
peaked around q, with an amplitude A and a width �� �q�.
The result of Ref. �8� is

�q = �
A2

2�

v�

cosh � � cos q/2
, �27�

where the upper signs hold for head-tail collisions �q�0�
and the lower ones for head-on collisions �q0�. However,
Eq. �27� does not hold for q→0 because the condition
�� �q� can no longer be fulfilled. In fact, Eq. �27� yields
an unphysical result for q→0: As the energy of the wave
packet is

Eq =
1

2

A2

�
�q

2, �28�

we get, for the quotient �q /Eq appearing in vd and Dph,

�q

Eq
= �

1

�q
2

v�

cosh � � cos q/2
, �29�

which diverges for q→0. However, a simple consideration
shows that �q must actually vanish in this limit: Consider a
soliton and a phonon with a wavelength in the order of the
length L of the system. Here the soliton sits on a very long
wave whose displacement field does not vary over the width
of the soliton. Thus the soliton cannot be influenced and is
not shifted at all. In order to take into account this feature we
introduce a cutoff qc; i.e., we set �q�0 for qqc�1, but qc
must be much larger than qmin=2� /L. On the other hand, qc
should be smaller than the inverse soliton width �, because
we expect the maximum shift �q when soliton and phonon
have about the same width.

We want to insert Eq. �29� into Eqs. �18� which have been
derived in a semiclassical approach where Eq=��q. How-
ever, Eq in Eq. �28� is the energy of a classical phonon wave
packet defined by the distribution function R�k� in k space
�see above Eq. �27��. The equivalence of the two approaches
was shown by identifying the phonon action variable J�k�
with �R�k�, using inverse scattering theory �8�.

vd �and also Dph� consists of two contributions stemming
from the head-on and head-tail collisions. Using Eqs. �18a�,
�26�, and �29� and the cutoff we obtain

vd = Tv���
−�

−qc dq

2��q
2

v� + cos q/2

cosh � + cos q/2

− �
qc

� dq

2��q
2

v� − cos q/2

cosh � − cos q/2 . �30�

Here we have neglected vd on the rhs of Eq. �18a�, because
an iterative solution of Eq. �18a�, starting with vd

�0�=0, shows
that vd

�1�=O�T�. Thus the next contribution is of O�T2� which
can be neglected for low temperatures �KBT much smaller
than the soliton energy�.

Equation �30� yields

vd = Tv��cosh � − v���
qc

� dq

2��q
2

2 cos q/2

cosh2 � − cos2 q/2
,

=
Tv��cosh � − v��

2� sinh2 �

�� 1

sin qc/2
+

1

sinh �
�arctan

sin qc/2

sinh �

− arctan
1

sinh �
� − 1 . �31�

Using qc�1 the result simplifies to
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vd =
Tv��cosh � − v��

2� sinh2 �
� 2

qc
−

1

sinh �
��

2
− arctan�sinh ��

− arctan
qc/2

sinh �
� . �32�

The soliton diffusion constant Dph in Eq. �18b� can be
calculated in the same way as vd, but here the contributions
from head-on and head-tail collisions add up, whereas they
nearly compensated each other in vd:

Dph =
1

2
T2v�

2�
qc

� dq

2��q
4� v� + vd + cos q/2

�cosh � + cos q/2�2

+
v� + vd − cos q/2

�cosh � − cos q/2�2 . �33�

Since vd=O�T�, it contributes a term of O�T3� to Dph which
can be neglected for low temperatures. The evaluation of the
integral in Eq. �33� yields a very long expression which sim-
plifies considerably for qc�1:

Dph =
T2v�

2

4� sinh4 �
�1

3

v��3 + cosh 2�� − 4 cosh �

qc
3

−
�

8

3 − 5v� cosh � + 2 cosh 2�

sinh3 �
 . �34�

Let us first discuss the drift velocity vd. The integrals �30�
contain the expression

v� ± cos q/2

cosh � ± cos q/2
=

v� − vq

V� − vq
, �35�

where

V� = E�/P� �36�

is a new characteristic velocity which controls the soliton-
phonon scattering together with the soliton velocity
v�= P� /M� and the phonon group velocity vq.
P�=sinh 2� is the �kinetic� momentum of the soliton,
which is different from its canonical momentum
P�

can=4�� cosh �−sinh �� �14,15�. M�=2� is the soliton
mass �excess mass due to the compression of the lattice �7��.
E�=sinh 2� is the soliton energy, when the linear term in the
potential �20� is omitted �7�. This term only influences the
energies, not the dynamics; moreover, it drops out for peri-
odic boundary conditions which are used in our MD simula-
tions. The above interpretation of V� is supported by the final
result �32� which shows that

vd � V� − v�; �37�

i.e., the drift velocity is nonzero only because V� is different
from v�.

Interestingly, the difference �37� has some similarity with
the difference between the phase and group velocities of the
phonons:

Vq − vq =
�q

q
−

d�q

dq
=

Eq

Pq
−

dEq

dPq
, �38�

with Eq=��q and Pq=�q in semiclassical language. This
similarity is increased by noting that the soliton velocity

v�= Q̇� appears in the Hamilton equation Q̇�=�E�
can /�P�

can,
where Q� is the soliton position. E�

can=E�−2� is the soliton
energy when the compression energy 2� is included. Since
E�

can does not depend on Q�, we can finally write

V� − v� =
E�

P�

−
dE�

can

dP�
can . �39�

Now the analogy with Eq. �38� is perfect because for the
phonons there is no difference between kinetic and canonical
momenta.

Finally we want to simplify our results �32� and �34�,
because in our MD simulations we only consider solitons
with ��1. For this case,

vd =
T

3�
� 1

qc
−

1

2�
��

2
− arctan

qc

2�
� , �40�

Dph =
T2

4�
�2

9

1

qc
3�2 −

�

12

1

�5� . �41�

IV. LANGEVIN DYNAMICS PLUS MD SIMULATIONS
FOR THE TODA LATTICE

Since we want to study a single soliton in a thermal pho-
non bath, we cannot start with Monte Carlo simulations
where many solitons would be present which cannot be
tracked �see the Appendix�. Therefore we first perform
Langevin-dynamics simulations; i.e., we start with a one-
soliton solution, and then we numerically integrate the equa-
tion of motion for a lattice of length L=1500, including
white-noise and damping terms �1�. After a sufficiently long
time ts, when the phonon bath is well established, both noise
and damping are switched off, but the integration continues
as an MD simulation up to the final time tf. The soliton
position X�t� is obtained by a rather involved method �1�,
because the soliton shape can be very significantly masked
by the fluctuations, depending on the chosen parameters
�below�.

The runs are repeated many times �typically 200� with
different random numbers producing the white noise; i.e., in
each run we have a different configuration at ts. Finally the
variance �2�t�= 
X2�− 
X�2 is computed as an average over all
the runs.

The results are fitted to two straight lines for t� ts and
t� ts, respectively. Figure 1 shows a case where the initial
soliton velocity is very close to the sound velocity �which
means very low energy� and the temperature is relatively
high, which results in a very noisy soliton and a large vari-
ance. For higher energy and/or lower temperature the vari-
ance is smaller.

The slopes of the straight lines are denoted by DLD for
t� ts and DMD for t� ts. DLD was investigated in Ref. �1�,
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while we are interested here in DMD which has to be com-
pared to Dph in Eq. �41�. �It was not possible to determine the
drift velocity and compare with Eq. �40�, because it is much
smaller than v� and the fluctuations in X�t� are large.�

In order to test the main prediction of Eq. �41�—namely,
Dph�T2—we fitted a quadratic function to our data of DMD
for different initial velocities v�; � is determined by
Eq. �22b� �Fig. 2�. For all v� the soliton energy E� is much
larger than kBT. The fits are fairly good and thus we can
now determine the cutoff wave number qc by setting
Dph�� ,qc ,T�=DMD�� ,T�. We obtain qc=0.031, 0.049, and
0.039 for �=0.077 46, 0.1731, and 0.2446, respectively. This
means that qc in fact fulfills the conditions made below Eq.
�29�: It is much larger than 2� /L=0.0042, and it is in fact
smaller than � and roughly constant; i.e., the cutoff is made
far below the maximum soliton shift around q=�, as antici-
pated in Sec. III.

V. GENERALIZATION TO OTHER ANHARMONIC
CHAINS

We proceed in several steps. First, we performed simula-
tion in which the Toda potential �20� was replaced by an
expansion up to fourth order in rn. The results are undistin-
guishable from those for the Toda lattice. Thus complete in-
tegrability is not important, as anticipated already in the in-
troduction.

Second, we express Dph in Eq. �34� by soliton character-
istics which are familiar also for solitons on other anhar-
monic chains in the continuum limit: namely, velocity, am-
plitude, and width. In the prefactor in Dph we easily identify
the velocity v�ªv and the amplitude sinh2 �ªA. �Here we
have assumed small displacements rn in Eq. �22a�.� The
braces in Eq. �34� contain expressions which have no direct
interpretation. Therefore we expand for ��1 and identify
the width �−1

ªb and obtain

Dph =
T2

4�

v2b

A2 � 2

9�bqc�3 −
�

12
 . �42�

Third, we choose a potential with a negative cubic anhar-
monicity − 1

3rn
3, because then the solitons have the same

shape as on the Toda lattice—namely, r�x , t�=−A sech2��x
−vt� /b�—but the relations between A, v, and b are different:

A =
3

2
�v2 − 1�, b = �3�v2 − 1�/v2�−1/2. �43�

The MD simulations exhibit again a clear T2 dependence
�Fig. 3�, but DMD is much larger than for the Toda lattice �cf.
Fig. 2�c� with the same velocity�. This is qualitatively ex-
plained by the factor 1 /A2 in Eq. �42�, because A is much

FIG. 1. Variance of soliton position vs time t for a Toda soliton
with v�=1.001—i.e., �=0.07746—and temperature T=10−4. At the
time ts=2500 noise and damping were switched off.

FIG. 2. Diffusion constant DMD vs temperature square T2 for Toda solitons. Circles: data from MD simulations. Solid lines: fit by
DMD=CT2 �a� v�=1.001—i.e., �=0.07746, C=46735.0. �b� v�=1.005—i.e., �=0.1731, C=5763.38. �c� v�=1.01—i.e., �=0.2446,
C=4193.95.
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smaller, but b is not changed much, compared to the Toda
lattice. In the case of a positive cubic anharmonicity the soli-
tons are rarefactive pulses, instead of compressional ones.
But this does not change Dph, because the soliton shift �q
enters quadratically in Eq. �18b�, and this is confirmed by the
MD simulations.

Our fourth and last step is to choose a potential with quar-
tic anharmonicity 1

4rn
4. Here the solitons have the shape

r�x , t�= ±A sech��x−vt� /b�—i.e., rarefactive or compres-
sional pulses—with

A = �2�v2 − 1��1/2, b = �12�v2 − 1�/v2�−1/2. �44�

However, as the sech shape differs considerably from the
sech2 shape of the Toda solitons the soliton shift �q and the
soliton diffusion constant Dph must also differ considerably
from the Toda lattice results �29� and �42�, respectively. Nev-
ertheless, the T2 dependence of Dph is not affected and this is
indeed confirmed by the MD simulations �Fig. 4�.

Moreover, we can estimate the order of magnitude of Dph:
For v=1.001 we have A=0.0633 from Eq. �44�, which is
more than a factor of 10 larger than the Toda soliton ampli-
tude 0.0060. The effective soliton width, defined as the dis-
tance for which r drops by sech2 1=0.42, is not much differ-
ent from the Toda case. Therefore the dominant dependence
in Eq. �42� is Dph�1/A2, which means that Dph should be
smaller by roughly a factor of 110 compared to the Toda
case. This means that the solitons on the chain with quartic
anharmonicity should be much more robust than Toda soli-
tons; i.e., they are much less affected by the scattering with
phonons and thus their diffusion constant is much smaller.
This is indeed confirmed by the MD simulations �Fig. 4�, but
only roughly because DMD is smaller than our estimate by a
factor of 16. Our estimate could be improved if we would
know the cutoff wavelength qc which is certainly different
from the Toda case since �q is different. The mechanism we
propose is presumably still effective, but �q is not known as
for Toda-like cases; we can of course anticipate that the
softer pulse shape implies a cutoff in larger q than the cubic
cases.

VI. CONCLUSIONS

The effects of thermal noise on solitons have been suc-
cessfully modeled here by including white noise and damp-

ing in the microscopic equations of motion. In the case of
pulse solitons on anharmonic chains there are three different
mechanisms which contribute to the diffusion of the solitons.

�i� The kicks of the noise on the atoms of the chain cause
effectively a shift of the soliton position. This yields a nor-
mal diffusive behavior; i.e., the variance �2�t� of the soliton
position contains a random walk term which is proportional
to the time t.

�ii� The noise also causes a change of the soliton’s shape;
e.g., its width and amplitude are changed. As the soliton
velocity is a function of these parameters, the velocity is also
changed which eventually yields a superdiffusive term in the
variance—i.e., a term proportional to t2. Both the normal
linear term and the anomalous quadratic term were calcu-
lated in a collective variable theory and confirmed by Lange-
vin dynamics simulations �1�.

�iii� The noise also produces phonons which scatter elas-
tically with the solitons which thus suffer spatial shifts.
When the noise has acted for a sufficiently long time, a ther-
mal phonon bath is created which produces a nondissipative
diffusion.

Our theory for this contribution yields Dpht, where
Dph�T2, in contrast to the first two contributions which both
have diffusion constants proportional to the temperature T.
The phonon contribution Dpht to the variance �2�t� can be
observed best in simulations, when noise and damping have
been switched off so that the first two contributions to �2

vanish. The predicted T2 dependence of Dph is indeed very
well confirmed by our simulations for all anharmonic lattices
we have investigated: chains with a Toda interaction poten-
tial, a truncated Toda potential, and potentials with cubic or
quartic anharmonicities.

In the case of the Toda lattice the factor C in Dph=CT2

has been used to determine the cutoff wave number qc which
avoids the long-wavelength divergence in the soliton shift. It
turns out that the cutoff is made far below the maximum shift
around q=�, as anticipated. For the other cases, the same qc
as in the Toda lattice has been used. In the case of the cubic
anharmonicity Dph agrees qualitatively with the simulations,
because here the solitons have the same shape as in the Toda
lattice. However, the shape is different in the case of a quar-
tic anharmonicity; thus, the formula for the soliton shift is
not valid here and an agreement cannot be expected without
a separate determination of this spatial shift.

FIG. 4. Diffusion constant DMD vs temperature square T2 for a
soliton with v=1.001 on a chain with quartic anharmonicity.
Circles: MD data. Solid line: fit by CT2 with C=9.91581.

FIG. 3. Diffusion constant DMD vs temperature square T2 for
a soliton with v=1.01 on a chain with cubic anharmonicity.
Circles: data from MD simulations. Solid line: fit by CT2 with
C=266267.0.
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APPENDIX: EQUILIBRIUM STATISTICAL MECHANICS
OF THE TODA LATTICE

The free energy of the lattice under zero pressure can be
calculated exactly �7�:

F =
1

�
�ln � − � + �� − 1/2�ln � − ln�����/�2��� , �A1�

where � is the gamma function and �=1/T. A low-
temperature expansion yields

F = − T ln T − T2/12 + ¯ , �A2�

where the first term is identical with the free energy of a
harmonic lattice and thus the second term is an anharmonic
contribution, which in fact can also be obtained as the lead-
ing term in an anharmonic perturbation theory.

In contrast to this, the corresponding term in the free
energy of systems which bear topological solitons, like
the sine-Gordon model, cannot be obtained by a perturbation
theory. The reason is that this term is proportional to
exp�−�Es�, where Es is the soliton energy, and thus has an
essential singularity at T=0. However, this term can be iden-

tified with the free energy Fs of a soliton gas �16�.
For the Toda lattice such a soliton gas identification was

tried, but was not possible. Here Fs�T4/3, where the phonon
phase shifts were taken into account �17�. Including the soli-
ton phase shifts, this term is canceled; the T2 term in Eq.
�A2� turns out to stem from phonon-phonon scattering
�18,19�. Thus there is no soliton signature in the free energy,
specific heat, and other static quantities of the Toda lattice.

For dynamic quantities the situation is quite similar. The
dynamic form factor S�q ,��, the Fourier transform of the
displacement-displacement correlation function, exhibits two
neighboring peaks in a phonon plus soliton gas phenomenol-
ogy if all phase shifts are neglected �20�. However, this two-
peak structure was not confirmed by combined Monte Carlo
�MC� and MD simulations �21� which show only one peak.
This peak exhibits Lorentzian and exponential tails on the
low- and high-frequency sides, respectively, as predicted by
the phonon and soliton gas approaches.

Interestingly, small soliton peaks could be identified
on the high-frequency shoulder if the MD simulations were
started with initial conditions stemming from certain non-
equilibrium configurations taken from incomplete MC runs
�22�. This means that only solitons with a relatively high
energy, and out of thermal equilibrium, can be identified.
The same holds when one tries to observe solitons directly
by tracking them in the displacement pattern of the MD
simulations.
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